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Abstract—Quantum random number generators (QRNG) pro-
vide quality random numbers, which are essential for cryptogra-
phy by utilizing the unpredictable nature of quantum mechanics.
Advancements in quantum optics made multiple different archi-
tectures for these possible. As part of a project aiming to realize
a QRNG service, we developed a system capable of providing
real-time monitoring and long term data collection while still
fulfilling regular processing duties for these devices. In most
cases, hardware validation is done by simply running a battery
of statistical tests on the final output. Our goal, however, was to
create a system allowing more flexible use of these tests, realizing
a tool that can also prove useful during the construction of our
entropy source for detecting and correcting unique imperfections.
We tested this flexibility and the system’s ability to adequately
perform the required tasks with simulated sources while further
examining the usability of available verification tools within this
new custom framework.

Index Terms—quantum computing, quantum random number
generation, statistical testing.

I. INTRODUCTION

RANDOMNESS is used as a resource in a wide variety of
applications nowadays. Numerical simulations, as well as

several cryptographic use cases all, depend on quality random
numbers for reliable operation [1], presenting a need for
quality high-speed generation schemes. The inherently unpre-
dictable nature of quantum mechanics poses an attractive foun-
dation for potential solutions. While most quantum computing
applications apart from quantum key distribution [2] are still in
the experimental phase, quantum random number generation
is already well established, with existing commercial products
[3]. Advancements in quantum optics made many different
theorized realizations feasible [4], possibly leading to new and
better generation methods.

Under the framework of a Hungarian quantum technology
project, our goal is to realize a quantum random number
service which provides reliable random numbers. For this,
a physical entropy source has to be built, paired with an
adequate processing system to provide verified, quality output.
While most processing systems mainly only consist of a
single algorithm to extract a uniform output from the raw
data coming from the hardware, our goal was to create one
that can also realize real-time monitoring and collect long
term statistics, allowing it to also aid the development of the
physical architecture by providing a custom tool capable of
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detecting possible imperfections arising due to construction
mistakes. Part of this project, there are multiple proposed
physical entropy sources under construction currently. Our
main goal was to create a system that is capable of supporting
all of these. In this paper, we present one such system.
Furthermore, due to the required flexibility, our solution can
also be used with most other types of generators.

II. RANDOM NUMBER GENERATORS

A. Generation approaches

Generally, random number generators can be categorized
into two main groups: deterministically operating algorithm
based pseudo-random number generators (PRNG) and true
random number generators (TRNG), which utilize some phys-
ically proven nondeterministic phenomenon as their entropy
source. PRNGs are usually easy to use and can provide on-
demand high-speed bit generation, however, their deterministic
operation presents an exploitable vulnerability to potential
attackers [5][6]. Knowing a particular algorithm, it’s inner state
can be deducted after collecting a sufficiently large amount of
output data. Once this state is known, the operation of the
generator can be accurately simulated, all future and present
outputs can be predicted, thereby rendering them useless for
most use cases. To combat this, these generators can be used
in conjunction with other, more easily accessible, albeit worse
quality outside entropy sources [7], using their limited entropy
to reinitialize their inner state. In this mode, they effectively
function as randomness extractors (or more accurately random-
ness expanders) for weak entropy sources [8]. True random
number generators, on the other hand, have no such inner
state governing their operation. Each generated bit should be
independent. Typically, these generators work by sampling
some appropriate physical phenomena like radioactive decay,
photoelectric effects or noises like avalanche, thermal or shot
noise. The source of randomness for all of the mentioned
cases can be traced back to the laws of quantum mechanics.
This is good news, as quantum unpredictability has been
experimentally verified numerous times [9][10][11]. The main
challenge is the actual error-free construction and operation of
these generators. No unwanted unknown outside bias or noise
polluting the measurements is allowed. Another limiting factor
for this approach can also be speed. The examined state of
the underlying phenomena often can’t change instantaneously.
To avoid correlation between samples, adequate restrictions
to sampling frequency have to be enforced. Their operation
mode, therefore, is often referred to as ”blocking” compared
to the ”non-blocking” nature of PRNGs, meaning that for each
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batch of output data the user first has to wait for enough of
the sampled physical events to occur, thereby presenting a
speed limit independent of processing power. Detecting faulty
operation states can present another potential problem. Due
to the expected random nature, all possible output strings can
occur during normal operation, making it impossible to tell
with full certainty if a given output is the product of nominal
or faulty operations. Fortunately, with the help of correctly
designed statistical tests, some statements can still be made
even in this case.

B. Planned generator architectures

Improvements in optical technologies have led to the emer-
gence of several possible quantum random number generator
architectures [4]. Most QRNGs today, as well as the proposed
entropy sources our system needs to be able to support, rely
on quantum optics as the quantum nature of states of light
allows for many different implementations. For the process-
ing system, information about the most probable error cases
associated with these sources is relevant since these errors
are expected to be detected. Another important factor is the
maximum generation rate with which the system needs to be
able to keep up. We briefly examine these for the proposed
sources our system is designed to work with in the future.

1) Branching path generator: The first proposed architec-
ture is a variant of one of the earliest quantum optical solutions
[12]. It puts a single photon into path superposition using
a beam splitter. Assuming this splitter has an ideal 50:50
split ratio, with detectors for each possible path, the resulting
which-path information provides uniform randomness. With
the introduction of some delay on only one of the paths and
by rejoining them later, the difference of the possible paths can
be seen from their arrival times. This allows for using only one
detector, which is advantageous because bias coming from the
difference in detectors becomes a non-factor. Notable possible
error and bias sources in this construction are:

• Imperfection of the beam splitter can introduce bias.
• The additional delaying element in one of the paths means

a higher chance of photon loss, leading to slightly reduced
detection rates from that path, causing bias.

• Dark count rate of the detector.
• Source producing multiple or no photons.
• Losses in other parts.

Imperfections that lead to no detection or multiple detections
(last two points) only affect output rate, not quality. Therefore,
only effects that introduce unwanted bias need to be detected
and corrected. Typical achievable bit rates for these generators
are in the Mbps range.

2) Photon counting generator: Using a continuous light
source, one can follow an approach similar to radioactive
decay based generators [13]. The expected number of photons
that arrive from the source during a given window of time
follows a Poisson distribution. This is not the sought after
uniform distribution, but various methods exist to transform it
into that [14]. Notable possible processing challenges for this
case can be the following:

• Poisson instead of uniform distribution.

TABLE I
POSSIBLE OUTCOMES OF STATISTICAL TESTS

Reality Conclusion
Accept H0 Accept Ha

Data is random No error Type I error

Data is not random Type II error No error

• Other bias originating from imperfections, like less de-
tection due to losses, detector efficiency, and dark count
rate, etc...

These generators can reach speeds of 50 Mbps or more
depending on used post-processing.

3) Time of arrival generator: Measuring the time difference
between each detection instead of the number of photons, a
similar scheme to the photon counting case can be realized.
This statistic is also exponential, which is not the ideal uniform
distribution, however, similarly to the previous case, there
are options to remedy this. One way is to compare the time
between the detection of the first and second, and second and
third photons, then assign our output bit the result of this
operation. Notable possible error sources are the following:

• Detector dead time.
• Accurate time measurement.
• Other bias originating from imperfections.

Generation speeds of these architectures can reach up to more
than 100 Mbps [15], setting the highest expectation for real
time testing in the processing system.

III. STATISTICAL TESTS

Defining randomness is more of a philosophical problem
due to the very nature of it. Deciding with certainty if a given
output is indeed random or not, is therefore quite problematic.
Consequently, in most practical approaches, we settle for less
than absolutely certain, but most probable. Being able to state
for a given output that it’s much more probably a result of
faulty operations than not, is good enough.

Randomness is a probabilistic property, so we can use
statistical tests to make these statements. Each test examines
a statistical property and decides whether it’s within our
expectations or not. Since there are infinitely many ways a
series can be non-random and one test only looks for one of
these, usually multiple tests are run in parallel until we say the
results are good enough. Another interesting fact is that for a
truly random output the tests are expected to fail from time to
time. The decision about a given bit string is generally made
according to hypothesis testing. Our null hypothesis (H0) is
that the output originated from a perfectly random source. Our
alternate hypothesis (Ha) is that it did not. We gather some
evidence trying to decide between our competing hypotheses,
typically by investigating some probabilistic value with known
theoretical distribution calculated from our string (calculate a
p-value), then check if it exceeds some a priori defined critical
value. If it does we reject our null hypothesis (H0) and accept
the alternative (Ha). This is the general principle behind the
widely used NIST tests [16] too.
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Table I shows the possible resulting cases regarding our
decisions and their relations to reality. Type I error happens
when we decide a random sequence to be non-random. For
real applications, this may result in speed loss, as detected
error states are not allowed to reach the user, and execution
of other unnecessary actions associated with error states.
Since even during nominal operations some of these errors
are expected, overreaction to these states should be avoided
because dropping everything that is not in our predefined
critical range can lead to a skewed distribution. Type II error is
the failure to detect real errors. It is much more dangerous than
Type I because it potentially means a vulnerability unknown
to the operator, so no action is taken to correct it, thereby
propagating this vulnerability to everything that uses the
generated randomness later. This type of error is the one we
strive to minimize. The probability of Type I and Type II errors
share a relation to each other and the length of the examined
string. A commonly chosen value for Type I error probability
is 0.01, as recommended by the NIST Statistical Test Suite
(STS).

The two most widely used statistical test collections nowa-
days are the NIST Statistical Test Suite (containing 15 tests)
and the Dieharder [17] test collection, which is an exten-
sion of the 1995 Diehard [18] tests, containing more than
a hundred different tests, including the ones already in the
STS too. Running tests is computationally expensive, so when
choosing a set of them to use, an additional goal is to
have tests orthogonal to each other, meaning that each of
them investigates independent properties from one another.
This is explicitly stated in the STS documentation, while the
Dieharder pack aims to provide the most all-round and deep
examination possible. Other new, less adapted approaches for
testing [19] also exist, but the common main problems with
currently available solutions in our case are that they don’t
support flexible, real-time monitoring and are computationally
expensive.

Tests are good for finding unexpected error sources, for re-
liable system validation, however, they cannot be used. Proper
analysis of the built architecture should never be skipped. The
NIST recommendations for generator design [20], [21], [22]
aim to provide a reliable baseline for this topic. In them, they
specify certain expectations to be met for architectures. The
general layout of a generator according to this can be seen
in Figure 1. These recommendations specify different tests
to be run at the start of the system, during operation, and
occasionally when requested from the outside, while the three
main error states expected to be detected are: entropy decrease,
source error, implementation error. Our system realizes all
the steps in Figure 1 after digitization while fulfilling these
recommendations.

IV. SYSTEM ARCHITECTURE

A. Specification

The processing system should take care of everything from
digitization to providing the final output to the outside world.
The following are the main points to fulfill and consider:

Fig. 1. General layout of a random number generator according to the NIST
recommendation.

• Real-time monitoring: The system needs to detect poten-
tial errors when they happen during operation, and if they
do, block the output. This requires real-time monitoring
and testing of the bitstream coming from the hardware.

• Correct the potential bias of the input and perform the
required processing to be able to provide a uniformly
distributed output.

• Test the uniform output for processing errors.
• Long term validation of the whole system (hardware

and processing): Store the required data for long term
statistics and run specialized tests on them.

• Ability to easily change the processing system according
to the specific needs of different hardware architectures.
Enabling custom solutions tailored to the specifics of each
physical source would also be beneficial, so flexibility is
a plus.

Considering these goals, we focused on creating a system
mainly to solve the real-time monitoring challenge while
allowing it to be adapted to the needs of all three planned
possible hardware layouts.

B. Realization

For the various expectations to be met, multiple tests and
other processes need to be executed during various stages of
processing. Two main approaches can be chosen here: all the
needed components work together as part of a larger program,
or all the components form smaller independent individual
programs that can communicate and work together to get the
same result. We chose the latter option as this allows for
more flexibility. Furthermore, in the case of some software
malfunction, only the corresponding smaller part is affected,
leading to higher redundancy. The whole system is realized
as a Linux virtual machine. This allows for relatively easy
testing and development. Smaller processing parts can be run
as individual daemons, permitting the use of tried and tested
management tools offered by the system for communication
and resource management. The block diagram of the relations
between processes can be seen in Figure 2. Input data is
read from the network via UDP. We assume that a safe local
network is shared with the hardware so no additional safety
measures are needed in this step. Should the need arise,
different, more secure methods can easily be implemented.
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batch of output data the user first has to wait for enough of
the sampled physical events to occur, thereby presenting a
speed limit independent of processing power. Detecting faulty
operation states can present another potential problem. Due
to the expected random nature, all possible output strings can
occur during normal operation, making it impossible to tell
with full certainty if a given output is the product of nominal
or faulty operations. Fortunately, with the help of correctly
designed statistical tests, some statements can still be made
even in this case.

B. Planned generator architectures

Improvements in optical technologies have led to the emer-
gence of several possible quantum random number generator
architectures [4]. Most QRNGs today, as well as the proposed
entropy sources our system needs to be able to support, rely
on quantum optics as the quantum nature of states of light
allows for many different implementations. For the process-
ing system, information about the most probable error cases
associated with these sources is relevant since these errors
are expected to be detected. Another important factor is the
maximum generation rate with which the system needs to be
able to keep up. We briefly examine these for the proposed
sources our system is designed to work with in the future.

1) Branching path generator: The first proposed architec-
ture is a variant of one of the earliest quantum optical solutions
[12]. It puts a single photon into path superposition using
a beam splitter. Assuming this splitter has an ideal 50:50
split ratio, with detectors for each possible path, the resulting
which-path information provides uniform randomness. With
the introduction of some delay on only one of the paths and
by rejoining them later, the difference of the possible paths can
be seen from their arrival times. This allows for using only one
detector, which is advantageous because bias coming from the
difference in detectors becomes a non-factor. Notable possible
error and bias sources in this construction are:

• Imperfection of the beam splitter can introduce bias.
• The additional delaying element in one of the paths means

a higher chance of photon loss, leading to slightly reduced
detection rates from that path, causing bias.

• Dark count rate of the detector.
• Source producing multiple or no photons.
• Losses in other parts.

Imperfections that lead to no detection or multiple detections
(last two points) only affect output rate, not quality. Therefore,
only effects that introduce unwanted bias need to be detected
and corrected. Typical achievable bit rates for these generators
are in the Mbps range.

2) Photon counting generator: Using a continuous light
source, one can follow an approach similar to radioactive
decay based generators [13]. The expected number of photons
that arrive from the source during a given window of time
follows a Poisson distribution. This is not the sought after
uniform distribution, but various methods exist to transform it
into that [14]. Notable possible processing challenges for this
case can be the following:

• Poisson instead of uniform distribution.

TABLE I
POSSIBLE OUTCOMES OF STATISTICAL TESTS

Reality Conclusion
Accept H0 Accept Ha

Data is random No error Type I error

Data is not random Type II error No error

• Other bias originating from imperfections, like less de-
tection due to losses, detector efficiency, and dark count
rate, etc...

These generators can reach speeds of 50 Mbps or more
depending on used post-processing.

3) Time of arrival generator: Measuring the time difference
between each detection instead of the number of photons, a
similar scheme to the photon counting case can be realized.
This statistic is also exponential, which is not the ideal uniform
distribution, however, similarly to the previous case, there
are options to remedy this. One way is to compare the time
between the detection of the first and second, and second and
third photons, then assign our output bit the result of this
operation. Notable possible error sources are the following:

• Detector dead time.
• Accurate time measurement.
• Other bias originating from imperfections.

Generation speeds of these architectures can reach up to more
than 100 Mbps [15], setting the highest expectation for real
time testing in the processing system.

III. STATISTICAL TESTS

Defining randomness is more of a philosophical problem
due to the very nature of it. Deciding with certainty if a given
output is indeed random or not, is therefore quite problematic.
Consequently, in most practical approaches, we settle for less
than absolutely certain, but most probable. Being able to state
for a given output that it’s much more probably a result of
faulty operations than not, is good enough.

Randomness is a probabilistic property, so we can use
statistical tests to make these statements. Each test examines
a statistical property and decides whether it’s within our
expectations or not. Since there are infinitely many ways a
series can be non-random and one test only looks for one of
these, usually multiple tests are run in parallel until we say the
results are good enough. Another interesting fact is that for a
truly random output the tests are expected to fail from time to
time. The decision about a given bit string is generally made
according to hypothesis testing. Our null hypothesis (H0) is
that the output originated from a perfectly random source. Our
alternate hypothesis (Ha) is that it did not. We gather some
evidence trying to decide between our competing hypotheses,
typically by investigating some probabilistic value with known
theoretical distribution calculated from our string (calculate a
p-value), then check if it exceeds some a priori defined critical
value. If it does we reject our null hypothesis (H0) and accept
the alternative (Ha). This is the general principle behind the
widely used NIST tests [16] too.
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Table I shows the possible resulting cases regarding our
decisions and their relations to reality. Type I error happens
when we decide a random sequence to be non-random. For
real applications, this may result in speed loss, as detected
error states are not allowed to reach the user, and execution
of other unnecessary actions associated with error states.
Since even during nominal operations some of these errors
are expected, overreaction to these states should be avoided
because dropping everything that is not in our predefined
critical range can lead to a skewed distribution. Type II error is
the failure to detect real errors. It is much more dangerous than
Type I because it potentially means a vulnerability unknown
to the operator, so no action is taken to correct it, thereby
propagating this vulnerability to everything that uses the
generated randomness later. This type of error is the one we
strive to minimize. The probability of Type I and Type II errors
share a relation to each other and the length of the examined
string. A commonly chosen value for Type I error probability
is 0.01, as recommended by the NIST Statistical Test Suite
(STS).

The two most widely used statistical test collections nowa-
days are the NIST Statistical Test Suite (containing 15 tests)
and the Dieharder [17] test collection, which is an exten-
sion of the 1995 Diehard [18] tests, containing more than
a hundred different tests, including the ones already in the
STS too. Running tests is computationally expensive, so when
choosing a set of them to use, an additional goal is to
have tests orthogonal to each other, meaning that each of
them investigates independent properties from one another.
This is explicitly stated in the STS documentation, while the
Dieharder pack aims to provide the most all-round and deep
examination possible. Other new, less adapted approaches for
testing [19] also exist, but the common main problems with
currently available solutions in our case are that they don’t
support flexible, real-time monitoring and are computationally
expensive.

Tests are good for finding unexpected error sources, for re-
liable system validation, however, they cannot be used. Proper
analysis of the built architecture should never be skipped. The
NIST recommendations for generator design [20], [21], [22]
aim to provide a reliable baseline for this topic. In them, they
specify certain expectations to be met for architectures. The
general layout of a generator according to this can be seen
in Figure 1. These recommendations specify different tests
to be run at the start of the system, during operation, and
occasionally when requested from the outside, while the three
main error states expected to be detected are: entropy decrease,
source error, implementation error. Our system realizes all
the steps in Figure 1 after digitization while fulfilling these
recommendations.

IV. SYSTEM ARCHITECTURE

A. Specification

The processing system should take care of everything from
digitization to providing the final output to the outside world.
The following are the main points to fulfill and consider:

Fig. 1. General layout of a random number generator according to the NIST
recommendation.

• Real-time monitoring: The system needs to detect poten-
tial errors when they happen during operation, and if they
do, block the output. This requires real-time monitoring
and testing of the bitstream coming from the hardware.

• Correct the potential bias of the input and perform the
required processing to be able to provide a uniformly
distributed output.

• Test the uniform output for processing errors.
• Long term validation of the whole system (hardware

and processing): Store the required data for long term
statistics and run specialized tests on them.

• Ability to easily change the processing system according
to the specific needs of different hardware architectures.
Enabling custom solutions tailored to the specifics of each
physical source would also be beneficial, so flexibility is
a plus.

Considering these goals, we focused on creating a system
mainly to solve the real-time monitoring challenge while
allowing it to be adapted to the needs of all three planned
possible hardware layouts.

B. Realization

For the various expectations to be met, multiple tests and
other processes need to be executed during various stages of
processing. Two main approaches can be chosen here: all the
needed components work together as part of a larger program,
or all the components form smaller independent individual
programs that can communicate and work together to get the
same result. We chose the latter option as this allows for
more flexibility. Furthermore, in the case of some software
malfunction, only the corresponding smaller part is affected,
leading to higher redundancy. The whole system is realized
as a Linux virtual machine. This allows for relatively easy
testing and development. Smaller processing parts can be run
as individual daemons, permitting the use of tried and tested
management tools offered by the system for communication
and resource management. The block diagram of the relations
between processes can be seen in Figure 2. Input data is
read from the network via UDP. We assume that a safe local
network is shared with the hardware so no additional safety
measures are needed in this step. Should the need arise,
different, more secure methods can easily be implemented.
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Fig. 2. Layout of the system and relations of the processes within. The thicker arrows show the path of the input data.

The data then gets read into a special cyclic emlog device
buffer [23]. The cyclic nature here is important, as this allows
for the independent operation of tests giving each process a
separate file descriptor, thus allowing multiple different tests
with different speeds to operate on the same buffer. (Solving
the problem of synchronizing tests with different processing
requirements and speed, leading to efficient resource utiliza-
tion.) The size of this buffer can be chosen to be as big
as 1 MB, meaning that even slower tests can always access
sizeable continuous data. The processed stream is written to
another cyclic buffer, from which the dedicated outd daemon
can provide output to the outside world through https. With
these two buffers, testing both the incoming raw data and
processed output is possible. Components of the system are
written in C/C++ to allow for easy adaptation of tests used
in major open-source suites, which are mainly written in C.
These components communicate with the monitord daemon
responsible for monitoring the system via real-time signals
while also logging their activities to their respective log files.
A real-time status report is constructed in monitord with
configurable parameters for deciding when to allow or block
output. The log files can later be used for long term analysis
of the whole system.

V. TOOLS AVAILABLE IN THE SYSTEM

A. Extractors

Removing unwanted bias from the output is the main goal
of entropy extractor algorithms. Several different of these
exist, some even specially recommended for use with quantum
generators [24]. During operation, these algorithms take in a
chunk of bits and output a usually smaller chunk with better
properties. They are mostly designed for correcting weaker
entropy sources and are computationally expensive. When
working with a specific good quality source some custom
options are possible [25], but for our simulated case, more
general solutions are preferred first. We used the SHA hash
(recommended by NIST) for this purpose because hardware
acceleration is supported for it in many modern processors.

B. Statistical tests

In the system, each statistical test can be done with a single
function call, following a mostly standardized format. Each
test gets the bits to test (also defining test length if there
are more variants available), the critical threshold value for
failure, and in some cases, other optional parameters, then
returns its decision and the calculated p-value used for said
decision. This permits us to easily define multiple tests to be
run sequentially in our processes while also simplifying the
code needed for singular test cases. For this to work and better
support continuous operation, existing statistical tests had to
be reimplemented using a custom bit container class. Readily
available sources and sufficient existing documentation made
this task straightforward. All 15 tests contained in the NIST
STS have already been adapted this way to our architecture.

Different tests look for different vulnerabilities, but gener-
ally, they follow the same structure: first they transform the
data into a more suitable format, then calculate a statistical
value, which is later compared to a reference distribution
resulting in a p-value. If this p-value is below some critical
threshold, the test fails. By changing the reference distribution
or the way the statistical value is calculated, tests can be
created for non-uniform distributions too. This can be es-
pecially useful when our hardware has some mathematically
describable known bias, making testing the raw, unprocessed,
biased input possible. To demonstrate this, a generalized
monobit test (expected ratio of ones and zeros can differ from
50:50) is also implemented in our system.

C. Long term statistics

Long term statistics can be calculated using relevant infor-
mation collected from the processes, which is stored in the
form of log files. Whenever a test is executed, the resulting
p-value and the length of the tested string is saved. In some
cases, other test specific auxiliary values are collected too.
This can allow for the construction of tests similar to the
one from which the data is collected, but spanning a wider
range of data, effectively realizing an expanded version of
the original. In the case of the monobit test, for example, it

SUBMITTED TO INFOCOMMUNICATIONS JOURNAL 5

means the following: The test uses an internal sum calculated
from the difference between the number of ones and zeros in
the examined sequence, adding +1 to it for each bit which
is one, and -1 for each zero. The p-value is then calculated
from the normalization of this sum by the square root of
the sequence length. By saving this sum and the number of
examined bits, an extended monobit test can be constructed
for the whole log file, aggregating the information from all
the smaller tests. Similar extended versions can be made from
other tests that use easily extractable metrics for calculating
their results. From the 15 STS tests these are:

• Runs test: sequence length, ratio of ones, number of runs.
• Test for the longest run of ones in a block: length and

number of tested blocks, counts in internal cells.
• Binary matrix rank test: number of blocks, number of full

rank and full rank-1 matrices.
• Cumulative sums (cusums) test: sequence length, largest

excursion, excursion at the end of the sequence.
• Random excursions test: sequence length, internal excur-

sion statistics, excursion at the end of the sequence.
Another more generalized way to summarize information is
the use of KS tests [26][27]. The expected distribution of
p-values is uniform, so statistical tests can be run to verify
this. The KS test is one such test, examining the deviation of
the actual results from this expectation and producing a new
p-value accordingly. When enough of these new values are
collected the test can be run on them again, resulting in p-
values representing more and more tested data. Theoretically,
for non-random sources, the results of these repeated tests tend
to zero over time. Keeping track of how many bits of data
each p-value represents and only testing values representing
the same amount of data together, a hierarchical structure can
be followed for aggregation. Ideally with this method limitless
data can be summarized, however, due to limited computa-
tional precision and errors adding up more and more, this is
not possible for practical use cases as the results get skewed
by these factors. These operations are also computationally
quite expensive, so depending on generator speed and available
resources, suitable compromises for choosing logged data to
be tested this way might have to be made.

VI. TESTING THE SYSTEM

Since the proposed hardware architectures in Section II-B
are still under construction, we tested our system with avail-
able software PRNGs. For most test cases we used AES RNG
with the Crypto++ C++ library [28]. The main expectation
towards the test generator is good enough short term behavior
to pass initial randomness testing, which it satisfies, allowing
us to test error detection capabilities. (The nominal operation
of the generator must produce good enough randomness to
not be seen as errors to the system.) In long-term statistics,
the weaknesses of this generator can be seen however, as the
results from KS testing start to tend to zero after some hours
of operation. This is most probably due to the combination
of using a deterministic algorithm with the relatively weak
internal entropy source of the test computer. Interestingly, for
the log data of short monobit tests, the resulting aggregated

TABLE II
TEST RESULTS FOR THE 49:51 UNEVEN INPUT DISTRIBUTION

Test Pass Fail Percent

cusums 109 3 2.7%
dft 3 0 0%
longest runblock 108 4 3.6%
monobit 441 7 1.6%
monobit long 6 9 60.0%
monobitblock 111 1 0.9%
runs 15 0 0.0%
serial 27 1 3.6%

Fig. 3. Configuration for testing modified monobit test and error correction
with extractor

p-values reached zero for all KS tests (using 10000 samples
each), while in other weak cases only a tendency towards zero
is observed. This implies that this phenomenon is not due
to the weakness of the generator. One possible explanation
is that a monobit test processing an n bit long sequence
can only have n different outputs as p-values, resulting in
only n different samples for the KS tests, leading to a non-
uniform distribution. The NIST input size recommendation
for the monobit test is minimum 100 bits, however, results
from our longer 1024 bit variant still exhibit this when used
directly for long term statistics calculations. Using the special,
extended version of the monobit test utilizing auxiliary logged
information, creating p-values for bigger chunks of data before
KS testing can solve this problem.

To achieve effective real-time monitoring, possible hardware
faults have to be detected as they occur. One such fault may be
the sudden shift of the ratio of ones and zeros. This is easily
simulated and can be a likely error type, especially for the
first proposed hardware architecture. (For example, by some
unexpected photon loss in one of the paths.) We simulated
two error cases: one with the ratio of 45:55 and another with
49:51. In the first simulation, the difference from uniformity
is so big that most tests fail (which is expected). The results
from the second simulation can be seen in Table II.

Only faster tests (low latency) are shown in the table. We
expect the monobit test to be the most sensitive to this error
type, so we ran two instances of it. One with 1024 bit sequence
length and another with 32768. The results show the longer
version of the monobit test to be the most sensitive, while other
test statistics are getting much closer to normal, surprisingly
including its shorter version too. This demonstrates that for
detecting even finer differences, longer, higher latency tests are
needed, thereby calling for a compromise between detection
speed and sensitivity.

With this simulated error, the generalized, modified for
this non-uniformity variant of the monobit test can also be
examined. A block diagram of this can be seen in Figure 3.

This layout also shows the correct operation of the imple-
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Fig. 2. Layout of the system and relations of the processes within. The thicker arrows show the path of the input data.

The data then gets read into a special cyclic emlog device
buffer [23]. The cyclic nature here is important, as this allows
for the independent operation of tests giving each process a
separate file descriptor, thus allowing multiple different tests
with different speeds to operate on the same buffer. (Solving
the problem of synchronizing tests with different processing
requirements and speed, leading to efficient resource utiliza-
tion.) The size of this buffer can be chosen to be as big
as 1 MB, meaning that even slower tests can always access
sizeable continuous data. The processed stream is written to
another cyclic buffer, from which the dedicated outd daemon
can provide output to the outside world through https. With
these two buffers, testing both the incoming raw data and
processed output is possible. Components of the system are
written in C/C++ to allow for easy adaptation of tests used
in major open-source suites, which are mainly written in C.
These components communicate with the monitord daemon
responsible for monitoring the system via real-time signals
while also logging their activities to their respective log files.
A real-time status report is constructed in monitord with
configurable parameters for deciding when to allow or block
output. The log files can later be used for long term analysis
of the whole system.

V. TOOLS AVAILABLE IN THE SYSTEM

A. Extractors

Removing unwanted bias from the output is the main goal
of entropy extractor algorithms. Several different of these
exist, some even specially recommended for use with quantum
generators [24]. During operation, these algorithms take in a
chunk of bits and output a usually smaller chunk with better
properties. They are mostly designed for correcting weaker
entropy sources and are computationally expensive. When
working with a specific good quality source some custom
options are possible [25], but for our simulated case, more
general solutions are preferred first. We used the SHA hash
(recommended by NIST) for this purpose because hardware
acceleration is supported for it in many modern processors.

B. Statistical tests

In the system, each statistical test can be done with a single
function call, following a mostly standardized format. Each
test gets the bits to test (also defining test length if there
are more variants available), the critical threshold value for
failure, and in some cases, other optional parameters, then
returns its decision and the calculated p-value used for said
decision. This permits us to easily define multiple tests to be
run sequentially in our processes while also simplifying the
code needed for singular test cases. For this to work and better
support continuous operation, existing statistical tests had to
be reimplemented using a custom bit container class. Readily
available sources and sufficient existing documentation made
this task straightforward. All 15 tests contained in the NIST
STS have already been adapted this way to our architecture.

Different tests look for different vulnerabilities, but gener-
ally, they follow the same structure: first they transform the
data into a more suitable format, then calculate a statistical
value, which is later compared to a reference distribution
resulting in a p-value. If this p-value is below some critical
threshold, the test fails. By changing the reference distribution
or the way the statistical value is calculated, tests can be
created for non-uniform distributions too. This can be es-
pecially useful when our hardware has some mathematically
describable known bias, making testing the raw, unprocessed,
biased input possible. To demonstrate this, a generalized
monobit test (expected ratio of ones and zeros can differ from
50:50) is also implemented in our system.

C. Long term statistics

Long term statistics can be calculated using relevant infor-
mation collected from the processes, which is stored in the
form of log files. Whenever a test is executed, the resulting
p-value and the length of the tested string is saved. In some
cases, other test specific auxiliary values are collected too.
This can allow for the construction of tests similar to the
one from which the data is collected, but spanning a wider
range of data, effectively realizing an expanded version of
the original. In the case of the monobit test, for example, it
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means the following: The test uses an internal sum calculated
from the difference between the number of ones and zeros in
the examined sequence, adding +1 to it for each bit which
is one, and -1 for each zero. The p-value is then calculated
from the normalization of this sum by the square root of
the sequence length. By saving this sum and the number of
examined bits, an extended monobit test can be constructed
for the whole log file, aggregating the information from all
the smaller tests. Similar extended versions can be made from
other tests that use easily extractable metrics for calculating
their results. From the 15 STS tests these are:

• Runs test: sequence length, ratio of ones, number of runs.
• Test for the longest run of ones in a block: length and

number of tested blocks, counts in internal cells.
• Binary matrix rank test: number of blocks, number of full

rank and full rank-1 matrices.
• Cumulative sums (cusums) test: sequence length, largest

excursion, excursion at the end of the sequence.
• Random excursions test: sequence length, internal excur-

sion statistics, excursion at the end of the sequence.
Another more generalized way to summarize information is
the use of KS tests [26][27]. The expected distribution of
p-values is uniform, so statistical tests can be run to verify
this. The KS test is one such test, examining the deviation of
the actual results from this expectation and producing a new
p-value accordingly. When enough of these new values are
collected the test can be run on them again, resulting in p-
values representing more and more tested data. Theoretically,
for non-random sources, the results of these repeated tests tend
to zero over time. Keeping track of how many bits of data
each p-value represents and only testing values representing
the same amount of data together, a hierarchical structure can
be followed for aggregation. Ideally with this method limitless
data can be summarized, however, due to limited computa-
tional precision and errors adding up more and more, this is
not possible for practical use cases as the results get skewed
by these factors. These operations are also computationally
quite expensive, so depending on generator speed and available
resources, suitable compromises for choosing logged data to
be tested this way might have to be made.

VI. TESTING THE SYSTEM

Since the proposed hardware architectures in Section II-B
are still under construction, we tested our system with avail-
able software PRNGs. For most test cases we used AES RNG
with the Crypto++ C++ library [28]. The main expectation
towards the test generator is good enough short term behavior
to pass initial randomness testing, which it satisfies, allowing
us to test error detection capabilities. (The nominal operation
of the generator must produce good enough randomness to
not be seen as errors to the system.) In long-term statistics,
the weaknesses of this generator can be seen however, as the
results from KS testing start to tend to zero after some hours
of operation. This is most probably due to the combination
of using a deterministic algorithm with the relatively weak
internal entropy source of the test computer. Interestingly, for
the log data of short monobit tests, the resulting aggregated

TABLE II
TEST RESULTS FOR THE 49:51 UNEVEN INPUT DISTRIBUTION

Test Pass Fail Percent

cusums 109 3 2.7%
dft 3 0 0%
longest runblock 108 4 3.6%
monobit 441 7 1.6%
monobit long 6 9 60.0%
monobitblock 111 1 0.9%
runs 15 0 0.0%
serial 27 1 3.6%

Fig. 3. Configuration for testing modified monobit test and error correction
with extractor

p-values reached zero for all KS tests (using 10000 samples
each), while in other weak cases only a tendency towards zero
is observed. This implies that this phenomenon is not due
to the weakness of the generator. One possible explanation
is that a monobit test processing an n bit long sequence
can only have n different outputs as p-values, resulting in
only n different samples for the KS tests, leading to a non-
uniform distribution. The NIST input size recommendation
for the monobit test is minimum 100 bits, however, results
from our longer 1024 bit variant still exhibit this when used
directly for long term statistics calculations. Using the special,
extended version of the monobit test utilizing auxiliary logged
information, creating p-values for bigger chunks of data before
KS testing can solve this problem.

To achieve effective real-time monitoring, possible hardware
faults have to be detected as they occur. One such fault may be
the sudden shift of the ratio of ones and zeros. This is easily
simulated and can be a likely error type, especially for the
first proposed hardware architecture. (For example, by some
unexpected photon loss in one of the paths.) We simulated
two error cases: one with the ratio of 45:55 and another with
49:51. In the first simulation, the difference from uniformity
is so big that most tests fail (which is expected). The results
from the second simulation can be seen in Table II.

Only faster tests (low latency) are shown in the table. We
expect the monobit test to be the most sensitive to this error
type, so we ran two instances of it. One with 1024 bit sequence
length and another with 32768. The results show the longer
version of the monobit test to be the most sensitive, while other
test statistics are getting much closer to normal, surprisingly
including its shorter version too. This demonstrates that for
detecting even finer differences, longer, higher latency tests are
needed, thereby calling for a compromise between detection
speed and sensitivity.

With this simulated error, the generalized, modified for
this non-uniformity variant of the monobit test can also be
examined. A block diagram of this can be seen in Figure 3.

This layout also shows the correct operation of the imple-
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mented extractor. We used the 45:55 ratio error case as it
represents a bigger deviation to be fixed. The results can be
seen in Table III.

TABLE III
RESULTS FROM THE TEST CASE CORRESPONDING TO FIGURE 3

Test Pass Fail Percent

monobit 6473 63 1.0%
monobit long 203 1 0.5%
monobit general 46020 565 1.2%

The results meet our expectations: the failure rate is around
1% and the speed loss caused by the extractor is also apparent,
as the monobit and monobit general tests have the same
sequence length, effectively showing the reduced bit rate as
a difference in total runs. (Since the main goal is to test the
operation of the system, a rather ”safe” extraction method is
used, not prioritizing extraction efficiency)

We also investigated the computational need of each test by
measuring execution time inside the processes. These results
are not hardware-independent but can be used to roughly
compare the tests to each other. Results using a virtual machine
utilizing 4 threads of a 5-year-old Intel i7-4710HQ laptop
processor can be seen in Table IV. This benchmark can serve

TABLE IV
EXECUTION TIME OF TESTS AND CORRESPONDING PROCESSING SPEEDS.

Test avg. time min. time avg. kbit/s max. kbit/s
approxentropy 3737ns 3482ns 2140 2297
cusums 958ns 240ns 8348 33000
dft 838ns 507ns 9543 15770
excursions 562ns 527ns 14220 15770
linearcomplex 122433ns 121778ns 65 65
longest runblock 406ns 173ns 19667 46022
matrix 1183ns 1119ns 6758 7143
mauer 1140ns 1052ns 7016 7599
monobit 107ns 18ns 74147 442810
monobit long 135ns 18ns 58982 442810
monobitblock 948ns 384ns 8431 20791
runs 315ns 55ns 25378 143091
serial 4111ns 1978ns 1945 4043
template 88539 87741 90 91

as a starting point when choosing tests we want to run in
real-time, as our limited computational resources may not be
able to run certain tests at the necessary speeds to keep up
with the incoming data stream. Simpler tests tend to run faster,
potentially reaching speeds up to 400 Mbits/second even in this
suboptimal environment, while for other, more complicated
ones it can be said with high confidence that we won’t be
able to run them real-time with a decent entropy source.

VII. CONCLUSION

In this paper, we presented a system capable of realiz-
ing output based real-time monitoring for random number
generators while providing possibilities for analyzing long
term behavior too. In the absence of the planned entropy
sources, we utilized readily available pseudo-random number
generators to simulate probable situations the system needs to
be able to handle, validating our design. While doing so, we

also examined the future applicability of the tools available in
this framework.

The next logical step is to pair the system with the pro-
posed hardware as construction reaches a prototype state and
optimize the monitoring tools used for this specific use case.
Although the main goal was adequately supporting particular
architectures, since the input of the system is only the raw data
stream, it can be paired with other generators too. The flexible
modular nature allows for the analysis of the tools within given
a known, etalon generator. To effectively realize this potential
in the future, however, some additional development aimed at
easier usability for potential users not yet familiar with the
code might still be needed.
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mented extractor. We used the 45:55 ratio error case as it
represents a bigger deviation to be fixed. The results can be
seen in Table III.

TABLE III
RESULTS FROM THE TEST CASE CORRESPONDING TO FIGURE 3

Test Pass Fail Percent

monobit 6473 63 1.0%
monobit long 203 1 0.5%
monobit general 46020 565 1.2%

The results meet our expectations: the failure rate is around
1% and the speed loss caused by the extractor is also apparent,
as the monobit and monobit general tests have the same
sequence length, effectively showing the reduced bit rate as
a difference in total runs. (Since the main goal is to test the
operation of the system, a rather ”safe” extraction method is
used, not prioritizing extraction efficiency)

We also investigated the computational need of each test by
measuring execution time inside the processes. These results
are not hardware-independent but can be used to roughly
compare the tests to each other. Results using a virtual machine
utilizing 4 threads of a 5-year-old Intel i7-4710HQ laptop
processor can be seen in Table IV. This benchmark can serve

TABLE IV
EXECUTION TIME OF TESTS AND CORRESPONDING PROCESSING SPEEDS.

Test avg. time min. time avg. kbit/s max. kbit/s
approxentropy 3737ns 3482ns 2140 2297
cusums 958ns 240ns 8348 33000
dft 838ns 507ns 9543 15770
excursions 562ns 527ns 14220 15770
linearcomplex 122433ns 121778ns 65 65
longest runblock 406ns 173ns 19667 46022
matrix 1183ns 1119ns 6758 7143
mauer 1140ns 1052ns 7016 7599
monobit 107ns 18ns 74147 442810
monobit long 135ns 18ns 58982 442810
monobitblock 948ns 384ns 8431 20791
runs 315ns 55ns 25378 143091
serial 4111ns 1978ns 1945 4043
template 88539 87741 90 91

as a starting point when choosing tests we want to run in
real-time, as our limited computational resources may not be
able to run certain tests at the necessary speeds to keep up
with the incoming data stream. Simpler tests tend to run faster,
potentially reaching speeds up to 400 Mbits/second even in this
suboptimal environment, while for other, more complicated
ones it can be said with high confidence that we won’t be
able to run them real-time with a decent entropy source.

VII. CONCLUSION

In this paper, we presented a system capable of realiz-
ing output based real-time monitoring for random number
generators while providing possibilities for analyzing long
term behavior too. In the absence of the planned entropy
sources, we utilized readily available pseudo-random number
generators to simulate probable situations the system needs to
be able to handle, validating our design. While doing so, we

also examined the future applicability of the tools available in
this framework.

The next logical step is to pair the system with the pro-
posed hardware as construction reaches a prototype state and
optimize the monitoring tools used for this specific use case.
Although the main goal was adequately supporting particular
architectures, since the input of the system is only the raw data
stream, it can be paired with other generators too. The flexible
modular nature allows for the analysis of the tools within given
a known, etalon generator. To effectively realize this potential
in the future, however, some additional development aimed at
easier usability for potential users not yet familiar with the
code might still be needed.
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mented extractor. We used the 45:55 ratio error case as it
represents a bigger deviation to be fixed. The results can be
seen in Table III.

TABLE III
RESULTS FROM THE TEST CASE CORRESPONDING TO FIGURE 3

Test Pass Fail Percent

monobit 6473 63 1.0%
monobit long 203 1 0.5%
monobit general 46020 565 1.2%

The results meet our expectations: the failure rate is around
1% and the speed loss caused by the extractor is also apparent,
as the monobit and monobit general tests have the same
sequence length, effectively showing the reduced bit rate as
a difference in total runs. (Since the main goal is to test the
operation of the system, a rather ”safe” extraction method is
used, not prioritizing extraction efficiency)

We also investigated the computational need of each test by
measuring execution time inside the processes. These results
are not hardware-independent but can be used to roughly
compare the tests to each other. Results using a virtual machine
utilizing 4 threads of a 5-year-old Intel i7-4710HQ laptop
processor can be seen in Table IV. This benchmark can serve

TABLE IV
EXECUTION TIME OF TESTS AND CORRESPONDING PROCESSING SPEEDS.

Test avg. time min. time avg. kbit/s max. kbit/s
approxentropy 3737ns 3482ns 2140 2297
cusums 958ns 240ns 8348 33000
dft 838ns 507ns 9543 15770
excursions 562ns 527ns 14220 15770
linearcomplex 122433ns 121778ns 65 65
longest runblock 406ns 173ns 19667 46022
matrix 1183ns 1119ns 6758 7143
mauer 1140ns 1052ns 7016 7599
monobit 107ns 18ns 74147 442810
monobit long 135ns 18ns 58982 442810
monobitblock 948ns 384ns 8431 20791
runs 315ns 55ns 25378 143091
serial 4111ns 1978ns 1945 4043
template 88539 87741 90 91

as a starting point when choosing tests we want to run in
real-time, as our limited computational resources may not be
able to run certain tests at the necessary speeds to keep up
with the incoming data stream. Simpler tests tend to run faster,
potentially reaching speeds up to 400 Mbits/second even in this
suboptimal environment, while for other, more complicated
ones it can be said with high confidence that we won’t be
able to run them real-time with a decent entropy source.

VII. CONCLUSION

In this paper, we presented a system capable of realiz-
ing output based real-time monitoring for random number
generators while providing possibilities for analyzing long
term behavior too. In the absence of the planned entropy
sources, we utilized readily available pseudo-random number
generators to simulate probable situations the system needs to
be able to handle, validating our design. While doing so, we

also examined the future applicability of the tools available in
this framework.

The next logical step is to pair the system with the pro-
posed hardware as construction reaches a prototype state and
optimize the monitoring tools used for this specific use case.
Although the main goal was adequately supporting particular
architectures, since the input of the system is only the raw data
stream, it can be paired with other generators too. The flexible
modular nature allows for the analysis of the tools within given
a known, etalon generator. To effectively realize this potential
in the future, however, some additional development aimed at
easier usability for potential users not yet familiar with the
code might still be needed.
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