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Abstract—In cellular multi-user multiple input multiple output
(MU-MIMO) systems the quality of the available channel state
information (CSI) has a large impact on the system performance.
Specifically, reliable CSI at the transmitter is required to deter-
mine the appropriate modulation and coding scheme, transmit
power and the precoder vector, while CSI at the receiver is needed
to decode the received data symbols. Therefore, cellular MU-
MIMO systems employ predefined pilot sequences and configure
associated time, frequency, code and power resources to facilitate
the acquisition of high quality CSI for data transmission and
reception. Although the trade-off between the resources used
for pilot and user data transmission has been known for long,
the near-optimal configuration of the available system resources
for pilot and data transmission is a topic of current research
efforts. Indeed, since the fifth generation of cellular systems utilizes
heterogeneous networks in which base stations are equipped with
a large number of transmit and receive antennas, the appropriate
configuration of pilot-data resources becomes a critical design
aspect. In this article, we review recent advances in system design
approaches that are designed for the acquisition of CSI and discuss
some of the recent results that help to dimension the pilot and
data resources specifically in cellular MU-MIMO systems.

Index Terms–Multi-antenna systems, channel state information,
estimation techniques, receiver algorithms.

I. INTRODUCTION

In the uplink of cellular MU-MIMO systems, the base
station (BS) typically acquires CSI of the uplink by means
of uplink pilot or reference signals that are orthogonal in the
code domain. Mobile stations (MSs) in long term evolution
(LTE) systems, for example, use cyclically shifted Zadoff-Chu
sequences to form demodulation reference signals allowing the
BS to acquire CSI at the receiver (CSIR), which is necessary
for uplink data reception [1]. By contrast, to acquire CSI at
the transmitter (CSIT), BSs rely either on downlink pilots and
quantized information fed back by MSs [2] or assume channel
reciprocity [3]. It has been pointed out by several related works
that in systems employing pilot aided channel estimation the
number of pilot symbols and the pilot-to-data power ratio
(PDPR) play a crucial role in optimizing the inherent trade-
off of sharing the available resources between pilot and data
symbols [3]–[6].

The early work in [4] determined lower and upper bounds
on the difference between the mutual information when the
receiver has an estimate of the CSI and when it has perfect
knowledge of the channel. It also determined upper and lower
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bounds – as functions of the variance of the channel measure-
ment error – on this difference. Subsequently, the results in [5]
showed how pilot-based channel estimation affects the capacity
of the fading channel, emphasizing that training imposes a
substantial information-theoretic penalty, especially when the
coherence interval T (expressed in terms of the number of
symbols available for pilot and data transmission) is only
slightly larger than the number of transmit antennas M , or when
the signal-to-noise ratio (SNR) is low. In these regimes, learning
the entire channel is highly suboptimal. Conversely, if the SNR
is high, and T is much larger than M , training-based schemes
can come very close to achieving capacity. Therefore, the power
that should be spent on training and data transmission depends
on the relation between T and M . Specifically in MIMO
orthogonal frequency division multiplexing (OFDM) systems
that employ minimum mean squared error (MMSE) channel
estimation, references [6] and [7] computed lower bounds. It
was also shown that the optimal PDPR that maximizes this
lower bound or minimizes the average symbol error rate can
significantly increase the capacity compared with a system that
uses a suboptimal PDPR setting. More recently, specifically
for MU-MIMO systems, the trade-off between pilot and data
symbols was analyzed in [8].

While the above references focused on a single cell sys-
tem, a series of other works developed models for multi-cell
MU-MIMO systems and proposed multi-cell pilot and/or data
power control schemes that aim to maximize suitable system-
wide utility functions [9]–[11]. In particular, the results in [9]
and [10] indicate that in multi-cell MU-MIMO systems con-
trolling the transmit power of both the pilot and data symbols
can drastically improve the spectral and energy efficiency of
the system. These papers assume the availability of a central
control entity, which is hardly feasible in practice. Likewise,
[10] demonstrates that multi-cell power control for the pilot
and data symbols is necessary to maximize the system sum-rate,
but it does not propose a decentralized algorithm that could be
used for this purpose in practice. Therefore, suitable multi-cell
schemes are actively researched by the academic and industrial
communities.

In this direction, the work by [11] proposes a multi-cell
game-theoretic approach for pilot contamination avoidance,
although it does not consider the power control problem and
that of setting the PDPR. The purpose of the present article is
to survey recent advances and to point at some open problems
in acquiring CSI in cellular MU-MIMO systems. Since under-
standing the inherent trade-offs of CSI acquisition is necessary
to appreciate recent system design approaches and results,
Section II provides a brief overview of the evolution of multi-
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antenna systems specifically in cellular networks. Next, Section
III describes the two fundamental inherent trade-offs associated
with CSI acquisition (related to the number of pilot symbols
and the applied pilot power respectively). Section IV surveys
recent papers related to CSI at the transmitter acquisition,
that is of fundamental importance for downlink transmissions.
Section V discusses advancements in CSI acquisition at the
receiver, that is important for uplink reception and downlink
transmission when reciprocity between the uplink and downlink
channels holds. Reference signal design and channel estimation
are discussed in Section VI. Next, Section VII provides an
overview of recent papers that develop decentralized schemes
that ease the burden on the base station by involving the
mobile stations in the power control, resource allocation and
channel estimation tasks. Finally, Section VIII discusses recent
advances in mmWave systems, that are promising candidates
for accommodating large scale MIMO systems and for taking
advantage of underutilized spectrum resources. Section IX
offers concluding remarks and provides an outlook on CSI
acquisition in future cellular systems.

II. THE EVOLUTION OF MULTI-ANTENNA SYSTEMS: FROM
SINGLE USER TO MASSIVE MULTI-USER MULTIPLE INPUT

MULTIPLE OUTPUT SYSTEMS

Conventional communication systems equipped with a single
transmit antenna and a single receive antenna are called single
input single output (SISO) communication systems (Figure 1,
upper left). This intuitively clear terminology explicitly refers
to a signal model that involves the convolution of the complex
impulse response of the wireless channel (typically represented
as a random variable h) and the single input x to model the
single output y:

y = h � x+ n, (1)

where n is complex baseband additive white Gaussian noise
(AWGN). The above equation is for a single realization of the
complex single output y [12].

The value of multiple antenna systems as a means to im-
prove communications, including improving the overall system
capacity and transmission reliability, was recognized in the
early ages of wireless communications. Specifically, adaptive
transmit or receive beamforming by means of employing mul-
tiple antennas either at the transmitter or the receiver roots
back to classic papers that appeared in the 1960s and 1970s
[13]–[15]. In particular, Widrow et al. described a least mean
square (LMS) adaptive antenna array, which is a technique
to adaptively determine the weights that are derived from the
received signal to minimize the mean squared error (MSE)
between the received signal and a reference (pilot) signal [13],
[15]. Applebaum proposed a multiple antenna array structure
that adaptively suppresses sidelobe energy when the desired
signal’s angle of arrival (AoA) is known, such as in a radar
system.

Starting from the 1980’s, there has been a renewed and
increased interest in employing multiple antenna techniques in
commercial systems, particularly mobile and cellular systems,
where multipath and unintentional interference from simultane-
ously served users were the main concern [16]. However, it was

interference 
cooperation 

Single Cell SISO Single Cell SIMO and MISO Single Cell MIMO 

Single Cell MU MIMO Multi-Cell MU MIMO Network/Cooperative  
MU MIMO 

Figure 1. The evolution of multiple antenna systems from single cell single
input single output transmissions to cooperative network multiple input multiple
output transmissions.

not until the cost of digital signal processing was dramatically
reduced and commercial wireless systems matured in the late
1990s that adaptive beamforming became commercially feasi-
ble, and large scale industrial interest has started to take off.

While traditional SISO systems exploit time- or frequency-
domain processing and decoding of the transmitted and received
data [17], [18], the use of additional antenna elements at the
cellular BS or user equipment (UE) side opens up the extra
spatial dimension to signal precoding and detection. Depending
on the availability of multiple antennas at the transmitter and
the receiver, such techniques are classified as Single Input
Multiple Output (SIMO), Multiple Input Single Output (MISO)
or MIMO (Figure 1, upper middle and upper right). Specifically,
space-time and space-frequency processing methods in SIMO,
MISO and MIMO systems make use of the spatial dimension
with the aim of improving the link’s performance in terms of
error rate, data rate or spectral and energy efficiency [15].

In the context of cellular networks, for example, in the
scenario of a multi-antenna enabled BS communicating with
a single antenna UE, the uplink (UL) and downlink (DL)
are referred to as SIMO and MISO respectively. When a
multi-antenna terminal is involved, a full MIMO link may be
obtained, although the term MIMO is sometimes also used in
a collective sense including SIMO and MISO as special cases.

A MIMO system, in which the transmitter and receiver are
equipped with M and N antennas respectively, is conveniently
characterized by the multi-dimensional version of (1) as fol-
lows:

y = H︸︷︷︸
N×M

x︸︷︷︸
M×1

+ n︸︷︷︸
N×1

∈ CN×1, (2)

where x and y represent the complex M and N dimensional
input and output vectors of the MIMO system respectively and
n is complex baseband AWGN vector.

While a point-to-point multiple-antenna link between a BS
and a UE is referred to as Single-User Multiple Input Mul-
tiple Output (SU-MIMO), MU-MIMO features several UEs
communicating simultaneously using the same frequency- and
time-domain resources (Figure 1, lower left). By extension,
considering a multi-cell system, neighboring BSs sharing their
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antennas and forming a virtual MIMO system to communicate
with the same set of UEs in different cells are called cooperative
multi-point (CoMP) or network MIMO transmission/reception
(Figure 1, lower middle and lower right).

Multiple antenna techniques, as illustrated by Figure 1 offer
(the combinations of) three advantages over traditional SISO
systems:

• Diversity gain: The diversity gain corresponds to the
mitigation of the effect of multipath fading, by means
of transmitting and/or receiving over multiple wireless
channels created by the multiple antennas on the transmit
and/or receive sides of the communication link.

• Array gain: The array gain corresponds to a spatial version
of the well-known matched-filter gain achieved by time-
domain receivers.

• Spatial multiplexing gain: The spatial multiplexing gain
refers to the ability to send multiple data streams in
parallel and to separate them on the basis of their spatial
signature. The spatial multiplexing gain is a particularly
attractive gain of MIMO systems over SISO systems,
because MIMO data stream multiplexing does not come
at the cost of bandwidth expansion and can therefore yield
drastic spectral efficiency gains.

As we shall see, the gains associated with multi-antenna
systems strongly depend on the availability of CSI – the
matrix H in (2) – at the transmitter and the receiver, which
motivated the research and standardization communities to
develop resource efficient techniques that enable the acquisition
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of the channel on the transmitted signal must be estimated
in order to recover the transmitted information. As long as
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in frequency division duplexing (FDD) mode) are available
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• Increasing the power, time, or frequency resources to
pilot signals improves the quality of the channel estimate,
but leaves fewer resources for uplink or downlink data
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• Constructing long pilot sequences (for example, employing
orthogonal symbol sequences such as those based on the
well-known Zadoff-Chu sequences in LTE systems) helps
to avoid tight pilot reuse in multi-cell systems), helps to
reduce or avoid inter-cell pilot interference. This is because
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long pilot sequences enable to construct a great number
of orthogonal sequences and, consequently, help to avoid
pilot reuse in neighbor cells, and thereby address the root
cause of PC. On the other hand, spending a greater number
of symbols on pilots increases the pilot overhead and might
violate the coherence bandwidth [8], [26].

• Specifically in MU-MIMO systems, increasing the number
of orthogonal pilot sequences may increase the number
of spatially multiplexed users at the expense of spending
more symbols when creating the orthogonal sequences [6],
[7].

In particular, increasing the pilot power increases the SNR
of the received pilot signal, and thereby improves the quality of
channel estimation in terms of the MSE of the channel estimate
[27]. Unfortunately, increasing the pilot power may also lead
to the SNR degradation of the data signals, and may exacerbate
the PC problem in multi-cell scenarios [9]. In addition to these
inherent trade-offs, the arrangement of the pilot symbols in the
time, frequency, and spatial domains have been shown to have
a significant impact on the performance of MU-MIMO and
massive MIMO systems in practice, see for example [6], [7],
[28].

IV. RECENT ADVANCES IN CSIT ACQUISITION
TECHNIQUES

Recent research results and experiments with practical im-
plementations have identified the key challenges that must be
overcome in order to realize the potential benefits of massive
MIMO [29]. One of the real-world challenges is given by the
need of accurate CSI at the BS side. In principle, CSI may
be obtained through transmitting orthogonal reference signals
from each transmit antenna element, and then feeding back the
observed spatial channel at the UE to the BS. This approach
has the drawback that the reference signal overhead in terms
of required CSI grows linearly with the number of transmit
antennas. More specifically, CSIT at the transmitter in cellular
systems employing FDD requires a feedback channel to the
cellular BS, since reciprocity between the downlink and uplink
channels cannot be assumed. When the number of antennas
deployed at the BS is large, feedback-based CSIT acquisition
is a challenge, because the number of pilot sequences as well
as feeding back information about the entire vector channel

Figure 3. Massive MIMO deployments at the base station can support a large
number of (up to several hundred) of possibly cross-polarized antenna elements.
When high quality CSI is available at the BS, the system supports single and
multi-user transmissions.

increases linearly with the number of antennas. For this reason,
massive MU-MIMO systems are expected to be deployed in
TDD systems, although valuable spectrum resources are allo-
cated to FDD systems. Therefore, CSIT acquisition techniques
that do not rely on channel reciprocity is of large interest by
the research and standardization communities.

Indeed, one of the main technical goals of the 5th generation
of cellular systems is to provide a system concept that supports
1000 times higher system spectral efficiency as compared
with current LTE deployments but with a similar cost and
energy dissipation per area as in today’s cellular systems [30].
Historically, the 3rd Generation Partnership Project (3GPP)
standard for the LTE has been designed with MU-MIMO as a
goal to increase capacity. To this end, LTE has adopted various
MU-MIMO technologies. Specifically, in LTE Release 8, the
downlink transmission supports up to four antenna ports at
the BS. There is an option for performing antenna switching
with up to two transmit antennas. Furthermore, Release 10
(also known as LTE-Advanced or LTE-A) provides enhanced
MIMO technologies. A new codebook and feedback design
are implemented to support spatial multiplexing with up to
eight independent spatial streams and enhanced MU-MIMO
transmissions. The LTE Release 13 enables high-order MIMO
systems with up to 64 antenna ports at the BS, which enables
deployments in higher frequencies by supporting high-precision
beamforming solution.

In a similar manner, massive or large MIMO systems
are considered essential for meeting 5G capacity goals [24].
Massive MIMO systems generally have a large number of
antennas at the BS consisting of 100 or more multiple antenna
elements with associated large code books and scalable CSI
acquisition techniques. An example of massive MIMO at the BS
is shown in Figure 3. Clearly, these systems impose much more
demanding requirements on CSI acquisition, precoding and
receiver design in terms of scalability than the early release of
LTE. Therefore, massive MIMO provides a suitable solution for
substantially increasing the spectral efficiency and thereby the
capacity for a given spectrum allocation. Massive MU-MIMO
networks exploit the additional spatial degrees of freedom
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1000 times higher system spectral efficiency as compared
with current LTE deployments but with a similar cost and
energy dissipation per area as in today’s cellular systems [30].
Historically, the 3rd Generation Partnership Project (3GPP)
standard for the LTE has been designed with MU-MIMO as a
goal to increase capacity. To this end, LTE has adopted various
MU-MIMO technologies. Specifically, in LTE Release 8, the
downlink transmission supports up to four antenna ports at
the BS. There is an option for performing antenna switching
with up to two transmit antennas. Furthermore, Release 10
(also known as LTE-Advanced or LTE-A) provides enhanced
MIMO technologies. A new codebook and feedback design
are implemented to support spatial multiplexing with up to
eight independent spatial streams and enhanced MU-MIMO
transmissions. The LTE Release 13 enables high-order MIMO
systems with up to 64 antenna ports at the BS, which enables
deployments in higher frequencies by supporting high-precision
beamforming solution.

In a similar manner, massive or large MIMO systems
are considered essential for meeting 5G capacity goals [24].
Massive MIMO systems generally have a large number of
antennas at the BS consisting of 100 or more multiple antenna
elements with associated large code books and scalable CSI
acquisition techniques. An example of massive MIMO at the BS
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receiver design in terms of scalability than the early release of
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substantially increasing the spectral efficiency and thereby the
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cause of PC. On the other hand, spending a greater number
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of orthogonal pilot sequences may increase the number
of spatially multiplexed users at the expense of spending
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deployments in higher frequencies by supporting high-precision
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(DoF) to spatially multiplex the complex data symbols for
several UEs scheduled on the same time-frequency resources
in order to focus the radiated energy towards the intended
receivers and to minimize the intracell and intercell interference
[3], [24], [31].

As mentioned, the original massive MIMO downlink im-
plementation is based on TDD operation, which allows to
design near-optimal linear precoders, as CSIT for the downlink
channels can be acquired through orthogonal uplink sounding
exploiting channel reciprocity [32]. In contrast, in FDD operat-
ing mode, acquiring CSIT is more complex, since the channel
estimation has to be carried out through downlink reference
symbols (RSs) and subsequent uplink feedback. Therefore,
in FDD systems, there exists a one-to-one correspondence
between RSs and antenna elements. Consequently, in FDD
systems, training and feedback overhead are often associated
with unfeasibility in the massive MIMO regime, where a few
resource elements (REs) are left for data transmission [33].

Nevertheless, operating in FDD remains appealing to mobile
network operators for several reasons, including i) most radio
bands below 6 GHz are paired FDD bands, ii) the BSs have
higher transmit power available for RSs than the UEs, and,
as pointed out in [33], iii) overall deployment, operation and
maintenance costs are reduced as fewer BSs are required in
FDD networks. Moreover, as the number of UEs increases,
longer orthogonal RSs are needed to avoid the so-called pilot
contamination [32] – which increases power consumption at
the UEs and the overall resource overhead.

To facilitate CSIT acquisition, in a way that scales well with
the increasing number of antennas, the grid of beams (GoB)
approach has been proposed in evolving 5G specifications [33],
[34]. According to the GoB concept, a set of precoding vec-
tors (that is a set of possible beams) is predefined, and the
UEs see low-dimensional virtual (effective) channels instead
of the actual ones, where the effective channels incorporate
the precoding vectors. In particular, one orthogonal RS is
allocated to each beam in the GoB codebook. Thus, estimating
such effective channels reduces the overhead, as it becomes
proportional to the codebook size (the number of possible
beams) rather than to the number of antenna elements [35].
Unfortunately, the reduction in training overhead due to coarse
granularity of the codebook, typically incurs some performance
degradation [36], as the digital precoder for data transmission
is based on a reduced channel representation, rather than a per-
antenna complex channel coefficient.

Another option for CSIT acquisition consists of designing the
GoB with a large number of beams, and training a small subset
of the available beams, which contains the dominant channel
(multi-path) components of those beams [33], [37]. The number
of such components depends on several factors, including the
frequency band and the radio scattering environment, which are
in general beyond the designer’s control. Nevertheless, when
multi-antenna UEs are deployed, statistical beamforming at the
UE side can be exploited to let the UEs excite a suitable channel
subspace, with the aim to further reduce the number of relevant
components to be estimated [38], [39].

V. RECENT ADVANCES IN CSIR AND RECIPROCITY-BASED
CSIT ACQUISITION TECHNIQUES

In fact, in 5G systems MSs are expected to have multiple
antennas. Therefore, in 5G systems, the cost of utilizing reci-
procity is that CSI acquisition requires array calibration in order
to take the differences in the transmit/receive radio frequency
(RF) chains of the different antenna elements at the BS and
MS into account. In time varying channels, the delay between
training and data transmission also represents an effect that
should be further studied. For example, recent results indicate
that channel prediction techniques can be used to mitigate this
delay which would degrade the performance of massive MIMO
systems [30].

In multi-cell and multi-tier cellular networks operating in
TDD and utilizing channel reciprocity, reusing the pilot se-
quences leads to uplink pilot interference, often referred to as
pilot contamination [3], [40]. In multi-cell MU-MIMO systems,
the pilot-data resource allocation trade-off is intertwined with
the management of intercell interference (contamination) both
on the pilot and data signals and calls for rethinking the
reference signal design of classical systems such as the 3GPP
LTE system. Recent works provide valuable insights into the
joint design of pilot and data channels in multi-cell massive
MU-MIMO systems [41].

Some of the problems related to PDPR setting in MU-MIMO
systems have been addressed by [8], [9], [26], [42]–[46]. Ref-
erence [8] considers a MU-MIMO scenario with time-division
duplex operation, and a coherence interval of T symbols
spent for channel training, channel estimation, and precoder
computation for DL transmission. The optimum number of
pilot symbols is determined for maximizing the lower bound of
the sum-throughput. However, receiver design and the PDPR-
setting are out of the scope of that paper. The problem of
joint power loading of data and pilot symbols for the purpose
of maximizing sum spectral efficiency is addressed in [42],
but the impact of PDPR setting at the MU-MIMO receiver is
not considered. In contrast, the problem of optimal training
period and update interval for maximizing the UL sum-rate is
addressed in [44], whereas the receiver structure at the BS is
not considered. Reference [26] considers single-user wireless
fading channels, and optimizes the pilot overhead. That paper
also identifies that the pilot overhead, as well as the spectral
efficiency penalty, depends on the square root of the normalized
Doppler frequency. More recently, uplink power control and
the PDPR-setting problem in MU-MIMO systems have been
addressed in references [9], [43], [47], [48], assuming practical
(zero-forcing (ZF) and MMSE based) multi-antenna receiver
structures. However, the papers mentioned above focus on
centralized approaches, and may not scale well in multi-cell
multi-user systems in practice. Scalable decentralized schemes
with low complexity are appealing for PDPR setting in multi-
cell MU-MIMO systems, and have been proposed in [28], [49]–
[51].

VI. REFERENCE SIGNAL DESIGN AND CHANNEL
ESTIMATION IN CELLULAR MIMO SYSTEMS

Due to the importance of CSI acquisition for data transmis-
sion and reception, it is natural, that designing reference (pilot)
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signals and employing accurate channel estimation techniques
are of particular importance in cellular MIMO systems. The
design of the uplink demodulation reference signals (DMRS)
specifically in 3GPP Long Term Evolution Advanced (LTE-A)
systems is described in [52]. In the LTE uplink, DMRS are used
to facilitate channel estimation for the coherent demodulation
of the physical uplink shared and control channels. The LTE
DMRS occupies specific OFDM symbols within the uplink
subframe according to the block type arrangement and supports
a large number of user equipment utilizing cyclic extensions
of the well known Zadoff-Chu sequences [53]. Because of its
importance in practical systems, in this section we elaborate
on the interplay between reference signal design and channel
estimation in cellular MIMO systems, and refer to related works
for further details.

To illustrate the design of reference signals in cellular
MIMO systems, let us consider the uplink transmission of a
multi-antenna single cell wireless system, in which users are
scheduled on orthogonal frequency channels. In cellular MIMO
systems, each MS employs an orthogonal pilot sequence, so that
no interference between pilots within any given cell is present
in the system. (Note that due to pilot reuse across neighbor
cells, pilot contamination may still cause pilot interference.)
This is a common practice in massive MU-MIMO systems
in which a single MS may have a single antenna. The BS
estimates the channel h (column vector of dimension Nr, where
Nr is the number of receive antennas at the BS) by either
least squares (LS) or MMSE channel estimation to initialize an
MMSE equalizer for uplink data reception. Since we employ
orthogonal pilot sequences, the channel estimation process can
be assumed independent for each MS within any given cell of
the cellular system. Let us consider a time-frequency resource
of T time slots in the channel coherence time, and F subcarriers
in the coherence bandwidth, with a total number of symbols
τ = F · T . We denote by τp the number of symbols allocated
to pilots, and by τd the number of symbols allocated to data
(τp+τd = τ ). Moreover, we consider a transmission power level
Pp and P for each pilot and data symbol, respectively. With
this setup, we consider two pilot symbol allocation methods,
namely block type and comb type, which we discuss in the
following subsections. In practice, both of these schemes, and,
in fact, a combination of these are often used to construct uplink
and downlink reference signals [52].

A. Block Type Pilot Allocation

The block type pilot arrangement consists of allocating one or
more time slots for pilot transmission, by using all subcarriers
in those time slots. This approach is a suitable strategy for slow
time-varying channels. Given T slots, a fraction of Tp slots are
allocated to the pilot and Td = T −Tp slots are allocated to the
data symbols. Note that a maximum transmission power Ptot

is allowed in each time slot, among all F subcarriers. This
power constraint is then identical for both the pilot (Pp) and
data power (P ), i.e.,

FPp ≤ Ptot FP ≤ Ptot. (3)

The power cannot be traded between pilot and data, but the
energy budget can be distributed by tuning the number of time

slots Tp and Td, i.e., τp = FTp and τd = FTd.

B. Comb Type Pilot Allocation
In the comb type pilot arrangement a certain number of

subcarriers are allocated to pilot symbols, continuously in time.
This approach is a suitable strategy for non-frequency selective
channels. Given F subcarriers in the coherence bandwidth,
a fraction of Fp subcarriers are allocated to the pilot and
Fd = F − Fp subcarriers are allocated to the data symbols.

Each MS transmits at a constant power Ptot, however,
the transmission power can be distributed unequally in each
subcarrier. In particular, if we consider a transmitted power Pp

for each pilot symbol and P for each data symbol transmission,
the following constraint is enforced:

FpPp + FdP = Ptot. (4)

The total number of symbols for pilots is τp = TFp and for
data is τd = TFd. However, with comb type pilot arrangement,
the trade-off between pilot and data signals includes the trade-
offs between the number of frequency channels and between the
transmit power levels, which is an additional degree of freedom
compared with the block type arrangement.

C. Channel Estimation
Let us consider a MS that transmits an orthogonal pilot

sequence s = [s1, ..., sτp ]
T , where each symbol is scaled as

|si|2 = 1, for i = 1, .., τp, and T , ∗, and H denote the transpose,
the conjugate and the conjugate transpose, respectively. Thus,
the Nr × τp matrix of the received pilot signal at the BS from
the MS is:

Yp = α
√
Pphs

T +N, (5)

where we assume that h is a circular symmetric complex
normal distributed vector of r.v. with mean vector 0 and
covariance matrix C (of size Nr), denoted as h ∼ CN (0,C), α
accounts for the propagation loss, N ∈ CNr×τp is the spatially
and temporally AWGN with element-wise variance σ2.

In this paper, we consider two techniques, i.e., the LS and
the MMSE channel estimation.

1) LS Estimation: Conventional LS estimation relies on
correlating the received signal with the known pilot sequence.
The BS estimates the channel based on assuming

ĥLS = h+h̃LS =
1

α
√

Pp

Yps∗(sT s∗)−1= h+
1

α
√

Ppτp
Ns∗.

(6)

Note that Ns∗ =
[∑τp

i=1 s
∗
ini,1, ...,

∑τp
i=1 s

∗
ini,Nr

]T
, then

Ns∗ ∼ CN (0, τpσ
2INr

).
By considering h ∼ CN (0,C), it follows that the estimated

channel ĥLS is a circular symmetric complex normal distributed
vector ĥLS ∼ CN (0,RLS), with

RLS = E{ĥLSĥ
H
LS} = C+

σ2

α2Ppτp
INr

. (7)

The channel estimation error is defined as h̃LS = h− ĥLS ,
so that h̃LS ∼ CN (0,WLS) with

WLS =
σ2

α2Ppτp
INr
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and the estimation MSE is derived as

εLS = E{||h̃LS ||2F } = tr {WLS} =
Nrσ

2

α2Ppτp
, (8)

where || · ||2F is the Frobenius norm.

2) MMSE Estimation: We define a training matrix S = s⊗
INr

(of size τpNr ×Nr), so that SHS = τpINr
. The τpNr × 1

vector of received signal can be conveniently rewritten as

Ỹp = α
√
PpSh+ Ñ, (9)

where Ỹp, Ñ ∈ CτpNr×1. The MMSE equalizer aims at
minimizing the MSE between the estimate ĥMMSE = HỸp

and the actual channel realization h. More precisely,

H = argmin
H

E{||HỸp − h||2F }

= α
√
Pp(σ

2INr
+α2PpCSHS)−1CSH ; H ∈ CNr×τpNr .

(10)

The MMSE estimate is then expressed as

ĥMMSE = α
√
Pp(σ

2INr
+α2PpτpC)−1CSH(α

√
PpSh+Ñ)

=

(
σ2

α2Ppτp
INr

+C

)−1

C

(
h+

1

α
√

Ppτp
SHÑ

)
.

(11)

Notice that SHN ∼ CN (0, τpσ
2INr

), and therefore the esti-
mated channel ĥMMSE is also a circular symmetric complex
normal distributed vector ĥMMSE ∼ CN (0,RMMSE), that is

ĥMMSE = h+ h̃MMSE ,

and

RMMSE = C2

(
σ2

α2Ppτp
INr

+C

)−1

, (12)

where we considered C = CH and applied the commutativity
of C and INr

to substitute
(

σ2

α2Ppτp
INr

+C

)−1

C = C

(
σ2

α2Ppτp
INr

+C

)−1

.

The channel estimation error is h̃MMSE = h− ĥMMSE so
that h̃MMSE ∼ CN (0,WMMSE) with

WMMSE = C

(
INr +

α2Ppτp
σ2

C

)−1

(13)

and the estimation MSE simply follows as

εMMSE = tr

{
C

(
INr

+
α2Ppτp

σ2
C

)−1
}
. (14)

Notice that for both LS and MMSE channel estimation, the
estimation MSE is a monotonically decreasing function of the
pilot energy per antenna Ppτp. Building on the characteristics of
LS and MMSE channel estimation techniques, several research
contributions characterize the receiver and the uplink signal
MSE and spectral efficiency based on h̃, which is computed
for LS (ĥLS) and MMSE estimation (ĥMMSE) [54], [55].

VII. DECENTRALIZED APPROACHES TO CSI ACQUISITION

As the number of antennas and the number of simultaneously
served users by a single BS increase, decentralized algorithms
for MU-MIMO systems become important, because they help
to reduce the required processing power at a single entity such
as the cellular base station. Therefore, there is an increasing
interest in decentralized optimization schemes for MU-MIMO
systems, see for example [28], [49]–[51]. These papers either
assume the availability of perfect CSI, or incorporate CSI er-
rors, but do not address the joint optimization of setting the pilot
and the data power. A different line of work proposed a game
theoretic approach for decentralized power control and resource
allocation in multi-user (MU) systems in which some form of
"performance coupling" [56] exists among the users, as the
increase of one user’s performance degrades the performance of
others, e.g., [57] and [58]. These references suggest that game
theoretic approaches in MU systems are appealing, because
they naturally admit decentralized algorithms that can be easily
deployed by both network nodes and MSs. It is, however,
unclear whether a game theoretic treatment could be used for
designing low complexity decentralized algorithms for setting
the PDPR in MU cellular systems.

Due to its central role in the performance of MIMO systems,
many recent work investigated the performance impact of the
PDPR and proposed optimal or near-optimal schemes for set-
ting the PDPR. The MU-MIMO scenario is analyzed in [8], in
which the coherence interval of T symbols is spent for channel
training, channel estimation, and precoder computation for DL
transmission. Specifically, the optimum number of terminals in
terms of the DL spectral efficiency is determined for a given
coherence interval, number of base station antennas, and SINR.
There is no receiver design involved and the pilot-to-data power
trade-off is out of the scope of the considered optimization
problem. The joint power loading of data and pilot symbols
for the purpose of acquiring CSIT for precoding is considered
in [42], but the impact of setting the PDPR at the MU-MIMO
receiver is not considered. In contrast, the UL sum-rate maxi-
mization problem by tuning the training period in a frequency-
flat fading channel is considered in [44], without modeling the
receiver structure at the BS. Reference [45] proposes a pilot
design that maximizes the spectral efficiency of high mobility
wireless communication systems that use pilot-assisted MMSE
channel estimation. That work does not explicitly model the
impact of CSI errors on MU-MIMO receivers, such as an
MMSE receiver. Reference [26] investigated the optimization of
the pilot overhead for single-user wireless fading channels, and
the dependencies of this pilot overhead on various system pa-
rameters of interest (e.g. fading rate, SNR) were quantified. By
finding an expansion of the spectral efficiency for the overhead
optimization in terms of the fading rate around the perfect-CSI
point, the square root dependence of both the overhead and the
spectral efficiency penalty was clearly identified.

Another set of related papers develop decentralized opti-
mization schemes for MIMO systems, either assuming the
availability of perfect channel state information, or incorpo-
rating channel state information errors, but do not address
the joint optimization of pilot and data power setting, see for
example [28], [49]–[51].
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Also, a number of recent work proposed a game theoretic
approach for power control and resource allocation in MU
systems in which performance coupling exists among the
users, as the increase of one user’s performance degrades the
performance of others [56], [59], [57], [58], [60], [61] and [62].
The MU power control problem for the Gaussian frequency-
flat relay channel is modelled as a Gaussian interference relay
game (GIRG) in [56]. In the GIRG, instead of allocating the
power budget across the set of sub-channels, each player aims
to decide the optimal power control strategy across a set of
hops. For cooperative cognitive radio networks, a coalitional
game theoretic approach is proposed in [59]. The coalitional
game model captures a cooperative secondary spectrum access
scenario, and involves primary and secondary spectrum users
such that the secondary users can act as cooperative relays
for the primary users. A non-cooperative feedback-rate control
game with pricing is considered in [57], as a model of the
downlink transmission of a closed-loop wireless network, in
which a multi-antenna BS utilizes CSI feedback to properly
set linear precoders to communicate with multiple users. Ref-
erence [58] proposes a distributed power splitting scheme for
simultaneous wireless information and power transfer in relay
interference channels, where multiple source-destination pairs
communicate through energy harvesting relays. The authors
in [60] model power control as a non-cooperative game between
transmitter-receiver pairs and show the existence of equilibria
using quasi-variational inequality theory. Reference [61] formu-
lates the problem of downlink power control of small cell base
stations under a total power constraint as a generalized Nash
equilibrium problem and proves the existence of equilibria.
The authors in [62] consider a game theoretical formulation
of the improper graph multi-coloring problem as a model of
resource allocation between transmitter-receiver pairs, prove
the existence of equilibria and provide polynomial complexity
algorithms for computing equilibria.

A powerful game theoretic framework for the non-
cooperative maximization of mutual information assuming
Gaussian interference channels in MU-MIMO systems is de-
veloped in [63]. As it is pointed out by [63], the main difficulty
in the MIMO case as compared with SISO systems is that
the optimal transmit directions of each MS change with the
strategies of the other users, as opposed to the SISO case,
where only the power allocation depends on the strategies of the
other MSs. However, this framework assumes the availability
of perfect CSI and does not address the trade-off between
data transmission and channel estimation. In contrast, the
work reported in [64] develops a game theoretic approach to
maximizing the own information rates subject to transmit power
and robust interference constraints allowing for non-perfect
CSI availability at the transmitters and receivers specifically
in a cognitive radio environment. However, the aspect of
tuning the pilot and data power levels subject to a sum power
constraint is not considered. For the DL, reference [65] assumes
perfect CSIT at the BS and proposes a partially asynchronous
distributed algorithm based on a non-cooperative game to find
the DL precoders in MU-MIMO systems.

The MIMO scheme proposed in [46] considers the problem
of joint pilot and data power control for the MU-MIMO UL.
However, the model of [46] uses a receiver that minimizes the

MSE of the estimated data symbols only when perfect CSI is
available. As it has been shown in our previous work [47], the
performance of this naive receiver can be significantly improved
by regularizing the receiver with respect to the statistics of the
CSI estimation errors.

Recognizing the importance of scalable CSI acquisition
approaches, in our recent work we propose a game theoretic
approach to setting the PDPR in the UL of MU-MIMO systems
and proposed decentralized algorithms that can be implemented
in practice and converge to a unique Nash equilibrium [66],
[67]. The contribution of those papers is a decentralized MU
(pilot and data) power allocation algorithm, which we refer
to as Best PDPR Algorithm (BPA). The numerical results
obtained by testing BPA in a MU-MIMO system employing
an increasing number of receive antennas yield several unique
insights. Our results showed that BPA performs close to the
globally optimal solution, which minimizes the sum of MSEs
in MU-MIMO systems, and outperforms the traditional pilot
power setting scheme that uses a fixed, predefined PDPR [66].

VIII. TOWARDS MMWAVE FREQUENCY BANDS

As discussed in this paper, Large-scale MIMO (LS-MIMO)
systems involving an order of magnitude greater number of
antenna elements than in the early releases of wireless stan-
dards are key enablers of next generation cellular systems
and providing mobile broadband services [32]. Theoretically, a
fully digital LS-MIMO beamforming architecture employing a
large number of digital transmit and receiver chains, combined
with resource efficient CSI acquisition techniques, near-optimal
receiver design and employing decentralized power control
schemes can yield near-optimal performance in terms of energy
and spectral efficiency [68].

However, deploying LS-MIMO systems in traditional cellular
frequency bands is also problematic due to the large physical
size of the antenna arrays and related environmental concerns of
the general public. Therefore, higher frequency bands, including
the millimeter-wave (mmWave) bands have recently emerged
as an appealing alternative for the commercial deployment
of LS-MIMO systems [69]. Indeed, in mmWave bands, the
physical array size can be greatly reduced, and, as an additional
advantage, vast amount of unused spectrum can be utilized for
attractive and bandwidth-demanding services [70], [71].

Deploying a large number of antennas with the associated
fully digital beamforming architecture incurs high cost and
increased power consumption, due to the excessive demand for
a large number of transceiver chains. Therefore, LS-MIMO sys-
tems with hybrid analog and digital beamforming for mmWave
deployment have attracted much attention from the research and
engineering communities, and a great number of promising hy-
brid architectures and associated technologies such as training
sequence and codebook designs have been proposed and tested
in practice [72]–[76]. The results of the marriage of LS-MIMO
and hybrid beamforming include significant gains in terms of
spectral and energy efficiency, and a cost-efficient technology
for accessing large amount of unused spectrum [68], [75], [77].

Specifically, in the framework of mmWave communications,
[78]–[80] have studied the effect of hardware impairments
on the performance of MIMO systems. The results of [78]
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show that single-carrier frequency domain equalization is more
robust against impairments from nonlinear power amplifiers
than OFDM in typical mmWave system configurations. On
the other hand, the results reported in [79] show a slight bit
error rate performance advantage of OFDM over single-carrier
frequency domain equalization under nonlinear RF distortions,
and suggest that subcarrier spacing is a crucial parameter in
mmWave massive MIMO systems.

IX. CONCLUDING REMARKS

In this survey paper, we discussed recent advances in the
field of CSI acquisition and managing the inherent the trade-
off between using time, frequency and power resources for CSI
acquisition and transmitting data symbols. Managing this trade-
off has a large impact on the achievable spectral efficiency
in cellular systems, in which the number of transmit and
receive antennas grows large. We made the point that the joint
allocation of frequency, time and power resources is subject to
constraints that depend on the specific pilot pattern, such as the
pattern used by the block or comb type arrangements of pilot
(reference) symbols.

Recent research results suggest that with a large number of
antennas, exploiting the engineering freedom of tuning both
the number of pilot symbols and the pilot transmit power
levels become increasingly important, especially if the relatively
simple LS estimator is used at the base station. Also, the gain
of using MMSE estimation (preferably with optimized pilot
power allocation) increases over LS estimation. Interestingly,
the optimal amount of pilot and data resources is different
when using MMSE and LS estimators and the gain in terms of
spectral efficiency when optimizing both the number of pilot
symbols and the transmit power levels increases as the num-
ber of antennas increases. In practical systems, decentralized
schemes in which mobile stations and base stations participate
in finding near optimal resource allocations become important,
because decentralized schemes scale well with the number
of served users and the number of antennas. A new field of
research deals with resource allocation and CSI acquisition in
millimeter-wave systems.
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